康普顿散射总结
========》 能量守恒: \(\frac{hc}{\lambda} + m_e c^2 = \frac{hc}{\lambda’} + \gamma m_e c^2\) 动量守恒: x方向:\(\frac{h}{\lambda} = \frac{h}{\lambda’} \cos\theta + p_{e,x}\), y方向:\(0 = \frac{h}{\lambda’} \sin\theta - p_{e,y}\) \(p_e^2 =p_{e,x}^2+p_{e,y}^2\) 动量能量关系: \(E_e^2 = (p_e c)^2 + (m_e c^2)^2\) 《======== 出射光子波长\(\lambda’\)与入射光子波长\(\lambda\)以及电子康普顿波长\(\lambda_c\)、散射角\(\theta\)关系: \( \lambda’-\lambda= \lambda_c (1-cos(\theta))\) \(\nu’ = \frac{\nu}{1 + \frac{h\nu}{m_e c^2}(1 - \cos\theta)}\) 散射角为180时: \( \lambda’ = \lambda + 2\lambda_c \) \(E_\gamma = \frac{(\gamma - 1) + \sqrt{\gamma^2 - 1}}{2} m_e c^2 =\frac{K_e+p_e^2/c}{2}\) \( p_\gamma = \frac{(\gamma - 1) + \sqrt{\gamma^2 - 1}}{2} m_e c =\frac{K_e/c+p_e^2/c^2}{2}\) ...