cos(kx-wt)的变换
对波动方程 \( \psi(x,t)=cos(kx-wt)\),对伽利略变换: \( x =x’ +vt’ \) \( t=t’ \) 有: \( \psi(x,t)=cos(k(x’+vt’)-\omega t’)=cos(kx’-(\omega -kv)t’\) 此时相速度: \( v_p’=\frac{\omega+kv}{k}=\omega+v \) 洛伦兹变换下: \(x = \gamma (x’ + v t’)\), \(t = \gamma ( t’ + \frac{v x’}{c^2})\), \(\psi’(x’, t’) = \cos \left[ k \gamma (x’ + v t’) - \omega \gamma \left( t’ + \frac{v x’}{c^2} \right) \right]\), \( = \cos \left[ \gamma \left( k - \frac{\omega v}{c^2} \right) x’ + \gamma (k v - \omega) t’ \right] \). ...