波动方程 \(\frac{\partial^2 \psi}{\partial x^2} +k^2\psi=0\),\(k^2\)为常数,则是没有外部作用的方程,相当于均匀的余弦波正弦波的平面波方程。如果k^2不是常数,则是非线性的,有相互作用的波动方程,而\(\frac{\partial^2 \psi}{\partial x^2} +(V(x)+E)\psi=0\),则表明了存在V(x)相互作用
\[
\psi(x) = f(x) e^{g(x)}
\]
求一阶导数和二阶导数。
第一步:一阶导数
使用乘积法则和链式法则:
\[ \psi’(x) = \frac{d}{dx}[f(x)] \cdot e^{g(x)} + f(x) \cdot \frac{d}{dx}[e^{g(x)}] \]
\[ = f’(x) e^{g(x)} + f(x) \cdot g’(x) e^{g(x)} \]
提取公因式 \( e^{g(x)} \):
\[ \boxed{ \psi’(x) = e^{g(x)} \left[ f’(x) + f(x) g’(x) \right] } \]
第二步:二阶导数
对一阶导数再求导:
\[ \psi’’(x) = \frac{d}{dx} \left\{ e^{g(x)} \left[ f’(x) + f(x) g’(x) \right] \right\} \]
这是一个乘积:\( e^{g(x)} \) 乘以另一个函数 \( h(x) = f’(x) + f(x) g’(x) \)
所以:
\[ \psi’’(x) = \left( \frac{d}{dx} e^{g(x)} \right) \cdot h(x) + e^{g(x)} \cdot \frac{d}{dx} h(x) \]
即:
\[ \psi’’(x) = g’(x) e^{g(x)} \cdot \left[ f’(x) + f(x) g’(x) \right] + e^{g(x)} \cdot \frac{d}{dx} \left[ f’(x) + f(x) g’(x) \right] \]
现在计算右边第二项的导数:
\[ \frac{d}{dx} \left[ f’(x) + f(x) g’(x) \right] = f’’(x) + \frac{d}{dx}[f(x) g’(x)] \]
使用乘积法则:
\[ = f’’(x) + f’(x) g’(x) + f(x) g’’(x) \]
代入回去:
\[ \psi’’(x) = g’(x) e^{g(x)} \left[ f’(x) + f(x) g’(x) \right] + e^{g(x)} \left[ f’’(x) + f’(x) g’(x) + f(x) g’’(x) \right] \]
提取 \( e^{g(x)} \):
\[ \psi’’(x) = e^{g(x)} \left\{ g’(x) \left[ f’(x) + f(x) g’(x) \right] + f’’(x) + f’(x) g’(x) + f(x) g’’(x) \right\} \]
展开第一项:
\[ g’(x) f’(x) + f(x) [g’(x)]^2 \]
所以整体括号内为:
\[ g’(x) f’(x) + f(x) [g’(x)]^2 + f’’(x) + f’(x) g’(x) + f(x) g’’(x) \]
合并同类项:
- \( g’(x) f’(x) + f’(x) g’(x) = 2 f’(x) g’(x) \)
- \( f(x) [g’(x)]^2 + f(x) g’’(x) = f(x) \left( [g’(x)]^2 + g’’(x) \right) \)
所以最终结果:
\[ \boxed{ \psi’’(x) = e^{g(x)} \left[ f’’(x) + 2 f’(x) g’(x) + f(x) \left( [g’(x)]^2 + g’’(x) \right) \right] } \]
✅ 总结
对于
\[
\psi(x) = f(x) e^{g(x)}
\]
其导数为:
-
一阶: \[ \psi’(x) = e^{g(x)} \left[ f’(x) + f(x) g’(x) \right] \]
-
二阶: \[ \boxed{ \psi’’(x) = e^{g(x)} \left[ f’’(x) + 2 f’(x) g’(x) + f(x) \left( (g’(x))^2 + g’’(x) \right) \right] } \]
🔍 应用示例:验证之前的 \( x e^{-x/2} \)
令:
- \( f(x) = x \) → \( f’(x) = 1 \), \( f’’(x) = 0 \)
- \( g(x) = -x/2 \) → \( g’(x) = -1/2 \), \( g’’(x) = 0 \)
代入公式:
\[ \psi’’(x) = e^{-x/2} \left[ 0 + 2(1)(-1/2) + x \left( (-1/2)^2 + 0 \right) \right] = e^{-x/2} \left[ -1 + x \cdot \frac{1}{4} \right] = e^{-x/2} \left( \frac{x}{4} - 1 \right) \]
✅ 与之前计算结果一致。
这个通用公式在量子力学、微分方程中非常有用。
\[
\psi(x) = f(x) e^{g(x)}
\]
的二阶导数代入方程:
\[
\frac{\partial^2 \psi}{\partial x^2} = E \psi
\quad \text{(1)}
\]
并分析满足该方程的条件。
第一步:写出 \(\psi’’(x)\)
之前我们已推导出:
\[ \psi’’(x) = e^{g(x)} \left[ f’’(x) + 2 f’(x) g’(x) + f(x) \left( [g’(x)]^2 + g’’(x) \right) \right] \tag{2} \]
而右边是:
\[ E \psi = E f(x) e^{g(x)} \tag{3} \]
第二步:代入方程 \(\psi’’ = E \psi\)
将 (2) 和 (3) 代入方程:
\[ e^{g(x)} \left[ f’’ + 2 f’ g’ + f \left( (g’)^2 + g’’ \right) \right] = E f e^{g(x)} \]
两边同时除以 \(e^{g(x)} \ne 0\):
\[ f’’(x) + 2 f’(x) g’(x) + f(x) \left( [g’(x)]^2 + g’’(x) \right) = E f(x) \tag{4} \]
✅ 关键方程:
\[ \boxed{ f’’ + 2 f’ g’ + f \left( (g’)^2 + g’’ - E \right) = 0 } \quad \text{(5)} \]
这是关于 \(f(x)\) 的一个二阶线性常微分方程,其中 \(g(x)\) 和 \(E\) 给定,或反过来,我们可以选择 \(g(x)\) 来简化问题。
应用示例:尝试分离变量或简化
我们可以通过选择 \(g(x)\) 来简化方程。例如,在量子力学中,常设:
\[ \psi(x) = f(x) e^{-\kappa x} \Rightarrow g(x) = -\kappa x,\quad g’(x) = -\kappa,\quad g’’(x) = 0 \]
代入 (5):
\[ f’’ + 2 f’ (-\kappa) + f \left( (-\kappa)^2 + 0 - E \right) = 0 \Rightarrow f’’ - 2\kappa f’ + f (\kappa^2 - E) = 0 \]
这是一个常系数方程,可进一步求解。
特例:若 \(f(x)\) 为常数
设 \(f(x) = A\)(常数),则 \(f’ = 0\), \(f’’ = 0\)
代入 (5):
\[ 0 + 0 + A \left( (g’)^2 + g’’ - E \right) = 0 \Rightarrow (g’)^2 + g’’ = E \]
这是一个关于 \(g(x)\) 的非线性常微分方程:
\[ \boxed{ (g’)^2 + g’’ = E } \]
令 \(u = g’\),则 \(g’’ = u’ = \frac{du}{dx}\)
\[ u^2 + \frac{du}{dx} = E \Rightarrow \frac{du}{dx} = E - u^2 \]
这是可分离变量的一阶方程:
\[ \frac{du}{E - u^2} = dx \]
解得(分 \(E > 0\), \(E = 0\), \(E < 0\) 讨论):
- 若 \(E = \kappa^2 > 0\):\(u = \kappa \tanh(\kappa x + C)\)
- 若 \(E = -\kappa^2 < 0\):\(u = \kappa \tan(\kappa x + C)\)(有奇点)
- 若 \(E = 0\):\(u = -1/(x + C)\)
对应 \(g(x) = \int u dx\),可积分。
但这意味着:只有当 \(f(x)\) 为常数且 \(g(x)\) 满足上述条件时,\(\psi = A e^{g(x)}\) 才满足 \(\psi’’ = E \psi\)。
回到你之前的解:\(\psi = x e^{-x/2}\)
令:
- \(f(x) = x\)
- \(g(x) = -x/2\) ⇒ \(g’ = -1/2\), \(g’’ = 0\)
代入左边:
\[ f’’ + 2 f’ g’ + f \left( (g’)^2 + g’’ - E \right) = 0 + 2(1)(-1/2) + x \left( (-1/2)^2 + 0 - E \right) = -1 + x \left( \frac{1}{4} - E \right) \]
令其为零:
\[ -1 + x \left( \frac{1}{4} - E \right) = 0 \quad \forall x? \]
不可能,除非系数为零:
\[ \frac{1}{4} - E = 0 \Rightarrow E = \frac{1}{4}, \quad \text{但 } -1 = 0 \text{ 矛盾} \]
所以 \(\psi = x e^{-x/2}\) 不满足 \(\psi’’ = E \psi\)
但它满足的是:
\[ \psi’’ + \frac{1}{x} \psi + E \psi = 0, \quad E = -1/4 \]
✅ 最终结论
将 \(\psi = f(x) e^{g(x)}\) 代入方程
\[
\frac{d^2 \psi}{dx^2} = E \psi
\]
得到:
\[ \boxed{ f’’ + 2 f’ g’ + f \left( (g’)^2 + g’’ - E \right) = 0 } \]
这是 \(f(x)\) 必须满足的条件。
- 若 \(f(x)\) 已知,可反求 \(g(x)\)
- 若 \(g(x)\) 已知,可求 \(f(x)\)
- 一般解依赖于具体形式
而你之前求的解 \(\psi = x e^{-x/2}\) 满足的是带势的方程,不是自由方程 \(\psi’’ = E \psi\)。
🔚 建议:
在物理中,常见的是:
\[ -\frac{d^2 \psi}{dx^2} + V(x) \psi = E \psi \Rightarrow \psi’’ = (V(x) - E) \psi \]
而不是 \(\psi’’ = E \psi\)。
请确认你方程的正确形式。
\[ \psi(x) = f(x) e^{g(x)} = 1 \cdot e^{g(x)} = e^{g(x)} \]
我们要求这个函数满足方程:
\[ \frac{d^2 \psi}{dx^2} = E \psi \tag{1} \]
其中 \( E \) 是常数。
第一步:计算 \(\psi’’(x)\)
\[ \psi(x) = e^{g(x)} \]
一阶导数:
\[ \psi’(x) = g’(x) e^{g(x)} \]
二阶导数(乘积法则):
\[ \psi’’(x) = \frac{d}{dx} \left[ g’(x) e^{g(x)} \right] = g’’(x) e^{g(x)} + g’(x) \cdot g’(x) e^{g(x)} = e^{g(x)} \left[ g’’(x) + (g’(x))^2 \right] \]
第二步:代入方程 \(\psi’’ = E \psi\)
右边:\( E \psi = E e^{g(x)} \)
所以:
\[ e^{g(x)} \left[ g’’ + (g’)^2 \right] = E e^{g(x)} \]
两边除以 \( e^{g(x)} \ne 0 \):
\[ g’’(x) + (g’(x))^2 = E \tag{2} \]
第三步:解这个非线性微分方程
令:
\[ u(x) = g’(x) \quad \Rightarrow \quad g’’(x) = u’(x) \]
代入得:
\[ u’ + u^2 = E \tag{3} \]
这是一个一阶非线性常微分方程(Riccati 型),可分离变量:
\[ \frac{du}{dx} = E - u^2 \quad \Rightarrow \quad \frac{du}{E - u^2} = dx \]
我们分情况讨论:
情况 1:\( E > 0 \)
令 \( E = \kappa^2 \),\(\kappa > 0\)
\[ \int \frac{du}{\kappa^2 - u^2} = \int dx \]
左边用部分分式:
\[ \frac{1}{\kappa^2 - u^2} = \frac{1}{2\kappa} \left( \frac{1}{\kappa - u} + \frac{1}{\kappa + u} \right) \]
积分:
\[ \frac{1}{2\kappa} \ln \left| \frac{\kappa + u}{\kappa - u} \right| = x + C \]
解出 \( u \):
\[ \ln \left| \frac{\kappa + u}{\kappa - u} \right| = 2\kappa (x + C) \Rightarrow \frac{\kappa + u}{\kappa - u} = A e^{2\kappa x}, \quad A = \pm e^{2\kappa C} \]
解这个方程:
\[ \kappa + u = A e^{2\kappa x} (\kappa - u) \Rightarrow \kappa + u = A \kappa e^{2\kappa x} - A u e^{2\kappa x} \]
移项:
\[ u + A u e^{2\kappa x} = A \kappa e^{2\kappa x} - \kappa \Rightarrow u (1 + A e^{2\kappa x}) = \kappa (A e^{2\kappa x} - 1) \]
所以:
\[ u(x) = \kappa \frac{A e^{2\kappa x} - 1}{A e^{2\kappa x} + 1} \]
令 \( A = 1 \)(可调常数),则:
\[ u(x) = \kappa \frac{e^{2\kappa x} - 1}{e^{2\kappa x} + 1} = \kappa \tanh(\kappa x) \]
因为 \( \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1} \)
所以:
\[ g’(x) = u(x) = \kappa \tanh(\kappa x) \]
积分得:
\[ g(x) = \int \kappa \tanh(\kappa x) , dx = \int \kappa \cdot \frac{\sinh(\kappa x)}{\cosh(\kappa x)} dx \]
令 \( w = \cosh(\kappa x) \),\( dw = \kappa \sinh(\kappa x) dx \)
\[ g(x) = \int \frac{dw}{w} = \ln |w| + C = \ln |\cosh(\kappa x)| + C \]
所以:
\[ g(x) = \ln(\cosh(\kappa x)) + C \quad (\text{取 } C=0 \text{ 可简化}) \]
情况 2:\( E = 0 \)
方程变为:
\[ u’ + u^2 = 0 \Rightarrow \frac{du}{dx} = -u^2 \Rightarrow \int \frac{du}{u^2} = -\int dx \Rightarrow -\frac{1}{u} = -x + C \Rightarrow u = \frac{1}{x - C} \]
所以:
\[ g’(x) = \frac{1}{x - C} \Rightarrow g(x) = \ln|x - C| + D \]
取 \( C = 0 \), \( D = 0 \),则 \( g(x) = \ln x \)
此时:
\[ \psi(x) = e^{g(x)} = e^{\ln x} = x \]
验证:\(\psi = x\),\(\psi’’ = 0\),\(E = 0\) ⇒ \(0 = 0 \cdot x = 0\),成立。
情况 3:\( E < 0 \)
令 \( E = -\kappa^2 \),\(\kappa > 0\)
\[ \frac{du}{dx} = -\kappa^2 - u^2 = - (u^2 + \kappa^2) \Rightarrow \int \frac{du}{u^2 + \kappa^2} = -\int dx \Rightarrow \frac{1}{\kappa} \arctan\left(\frac{u}{\kappa}\right) = -x + C \]
\[ \arctan\left(\frac{u}{\kappa}\right) = -\kappa x + D \Rightarrow u = \kappa \tan(-\kappa x + D) = -\kappa \tan(\kappa x - D) \]
所以:
\[ g’(x) = -\kappa \tan(\kappa x - D) \Rightarrow g(x) = -\kappa \int \tan(\kappa x - D) dx = \ln|\cos(\kappa x - D)| + C’ \]
(因为 \(\int \tan z , dz = -\ln|\cos z|\))
所以:
\[ g(x) = \ln|\cos(\kappa x - D)| + C’ \]
✅ 最终答案
当 \( f(x) = 1 \),即 \(\psi(x) = e^{g(x)}\),满足 \(\psi’’ = E \psi\) 时,\(g(x)\) 的解如下:
\[ \boxed{ g’’ + (g’)^2 = E } \]
通解分三种情况:
-
若 \( E = \kappa^2 > 0 \): \[ g(x) = \ln(\cosh(\kappa x)) + C \] \[ \psi(x) = A \cosh(\kappa x), \quad A = e^C \]
-
若 \( E = 0 \): \[ g(x) = \ln|x| + C \quad \Rightarrow \quad \psi(x) = A x \]
-
若 \( E = -\kappa^2 < 0 \): \[ g(x) = \ln|\cos(\kappa x + \phi)| + C \quad \Rightarrow \quad \psi(x) = A \cos(\kappa x + \phi) \]
🔍 物理意义
- \( E > 0 \):指数增长/双曲函数解(非束缚态)
- \( E = 0 \):线性解
- \( E < 0 \):振荡解,如自由粒子平面波的实部
这些是自由粒子(\(V=0\))薛定谔方程的解。
✅ 总结
当 \( f(x) = 1 \),满足 \(\psi’’ = E \psi\) 的 \(g(x)\) 由下式决定:
\[ \boxed{ g(x) = \begin{cases} \ln(\cosh(\kappa x)) + C, & E = \kappa^2 > 0 \\ \ln|x| + C, & E = 0 \\ \ln|\cos(\kappa x + \phi)| + C, & E = -\kappa^2 < 0 \end{cases} } \]
\[ \boxed{ \psi(x) = \begin{cases} A \cosh(\kappa x), & E = \kappa^2 > 0 \\ A x, & E = 0 \\ A \cos(\kappa x + \phi), & E = -\kappa^2 < 0 \end{cases} } \]