在前面我们得到x方向的坐标变换:

\( x=x’+vt’\)

\(t=t’+x’v/c^2\)

根据上面两个式子,可以得到反变换:

\(x’=\gamma^2 (x-vt)\)

\(t’ =\gamma^2 (t-xv/c^2)\)

假设函数f(x,t)符合上述变换,有:

\(\frac{\partial}{\partial t} = \frac{\partial x’}{\partial t} \frac{\partial}{\partial x’} + \frac{\partial t’}{\partial t} \frac{\partial}{\partial t’}\)

\( = -\gamma^2 v \frac{\partial}{\partial x’} + \gamma^2 \frac{\partial}{\partial t’} = \gamma^2 \left( -v \frac{\partial}{\partial x’} + \frac{\partial}{\partial t’} \right) \)

\(\frac{\partial}{\partial x} = \frac{\partial x’}{\partial x} \frac{\partial}{\partial x’} + \frac{\partial t’}{\partial x} \frac{\partial}{\partial t’}\)

\( = \gamma^2 \frac{\partial}{\partial x’} - \gamma^2 \frac{v}{c^2} \frac{\partial}{\partial t’} = \gamma^2 \left( \frac{\partial}{\partial x’} - \frac{v}{c^2} \frac{\partial}{\partial t’} \right) \)

有:

\(\frac{\partial^2 f}{\partial t^2} = \left( \gamma^2 \right)^2 \left( -v \frac{\partial}{\partial x’} + \frac{\partial}{\partial t’} \right)^2 f = \gamma^4 \left( v^2 \frac{\partial^2}{\partial x’^2} - 2v \frac{\partial^2}{\partial x’ \partial t’} + \frac{\partial^2}{\partial t’^2} \right) f\)

\(\frac{\partial^2 f}{\partial x^2} = \left[ \gamma^2 \left( \frac{\partial}{\partial x’} - \frac{v}{c^2} \frac{\partial}{\partial t’} \right) \right]^2 f = \gamma^4 \left( \frac{\partial}{\partial x’} - \frac{v}{c^2} \frac{\partial}{\partial t’} \right)^2 f\)

于是可得:

\(\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = \gamma^2 \left( \frac{\partial^2 f}{\partial t’^2} - c^2 \frac{\partial^2 f}{\partial x’^2} \right)\)

如果\(\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} =0 \),可得:

\(\left( \frac{\partial^2 f}{\partial t’^2} - c^2 \frac{\partial^2 f}{\partial x’^2} \right) =0\)

所以对无源线性波动方程,没有\(\gamma\)也能直接变换

如果是洛伦兹变换,则可以得到:

\(\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = \left( \frac{\partial^2 f}{\partial t’^2} - c^2 \frac{\partial^2 f}{\partial x’^2} \right)\)

所以洛伦兹变换是上面变换的变种,使得变换变得更容易计算

上面是匀速的情况。

===============

考虑弦的振动导致的波动,也是类似延迟累积导致波动: