静止电荷的电场:

\(\vec{E}’ = \frac{1}{4\pi\varepsilon_0} \frac{q}{r’^3} \vec{r}’,\quad \vec{B}’ = 0\)

在使用洛伦兹坐标变换后,\(r’\)到\(r\)坐标的变换并不正确:

\(\vec{E}(\vec{r}, t) = \frac{q}{4\pi\varepsilon_0} \cdot \frac{ (\gamma (x-vt), y, z) }{ \left[ \gamma^2 (x - v t)^2 + y^2 + z^2 \right]^{3/2} }\)

只能使用推迟势得到正确的电场方程

\(\vec{E}(\vec{r}, t) = \frac{q}{4\pi\varepsilon_0} \cdot \frac{ \gamma ( \vec{r} - \vec{v} t ) }{ \left[ \gamma^2 (x - v t)^2 + y^2 + z^2 \right]^{3/2} }=\frac{q}{4\pi\varepsilon_0} \cdot \frac{ (\gamma (x-vt), \gamma y, \gamma z) }{ \left[ \gamma^2 (x - v t)^2 + y^2 + z^2 \right]^{3/2} }\)

\(\vec{r} - \vec{v} t =\begin{pmatrix} x - vt \\ y \\ z \end{pmatrix}\)

推迟势得到方程,表明了在x方向,电场没有变换,在y,z方向,电场增大了\(\gamma\)倍

\[ \boxed{ \begin{aligned} E_x &= E’_x \\ E_y &= \gamma E’_y \\ E_z &= \gamma E’_z \\ B_x &= 0 \\ B_y &= \gamma \frac{v}{c^2} E’_z = \frac{v}{c^2} E_z \\ B_z &= -\gamma \frac{v}{c^2} E’_y = -\frac{v}{c^2} E_y \\ \vec{B} &= \frac{1}{c^2} \vec{v} \times \vec{E} \end{aligned} } \]

验证\(E_x=E’_x\):

\(E’_x = \frac{1}{4\pi\varepsilon_0} \frac{q x’}{r’^3} = \frac{1}{4\pi\varepsilon_0} \frac{q \cdot \gamma (x - vt)}{ \left[ \gamma^2 (x - vt)^2 + y^2 + z^2 \right]^{3/2} }=E_x\)

也就是在同一个点测量,由于洛伦兹收缩,不同坐标系内测到的电场的水平分量大小相同

\( t = 0 \),得到瞬时电场:

\(\vec{E}(x, y, z, 0) = \frac{q}{4\pi\varepsilon_0} \cdot \frac{ \gamma (x, y, z) }{ \left( \gamma^2 x^2 + y^2 + z^2 \right)^{3/2} }\)

也就是电荷经过原点时的电场分布图,也就是电场形状。形状是个椭球。

有关系式:

\( E^2 =E’^2 + (cB_y)^2 + (cB_z)^2 =E’^2+(cB)^2 \)

同时有:

\((E_y)^2 = (E’_y)^2 + (cB_z)^2 \)

\((E_z)^2 = (E’_z)^2 + (cB_y)^2 \)

也就是在垂直运动方向的电场分量变大了,变大的部分为垂直于原静止分量的磁场,

也就是匀速运动时,垂直于运动方向上的电力线密度增加,导致了水平方向上电通量增加,从而产生了旋转的磁场,

这就是推迟势得到的方程中,y, z方向多了个\(\gamma\)的缘故,是因为多了个磁场。

推迟势方程也可以写为:

\(\vec{E}(\vec{r}, t) = =\frac{q}{4\pi\varepsilon_0} \cdot \frac{ (x-vt, y, z) }{ \left[ (x - v t)^2 + (y^2 + z^2)/\gamma^2 \right]^{3/2} }\)

\( t=0 \)时,可以得到电场分布的图像:

\(\vec{E}(\vec{r}, 0) = =\frac{q}{4\pi\varepsilon_0} \cdot \frac{ (x, y, z) }{ \left[ x^2 + (y^2 + z^2)/\gamma^2 \right]^{3/2} }\)

磁场B的变换

\(\vec{B}(x, y, z, t) = \frac{q \gamma v}{4\pi\varepsilon_0 c^2} \cdot \frac{ (-z \hat{y} + y \hat{z}) }{ \left( \gamma^2 (x - vt)^2 + y^2 + z^2 \right)^{3/2} }\)

由:

\((\nabla \times \vec{B})_y = \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}\)

有:

\((\nabla \times \vec{B})_y = \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} = - \frac{\partial B_z}{\partial x}= \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}\)

即:

\(\frac{\partial B_z}{\partial x} = - \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}\)

同样有:

\(\frac{\partial B_y}{\partial x} = - \mu_0 \varepsilon_0 \frac{\partial E_z}{\partial t}\)

\(E_y = \frac{\gamma q}{4\pi\varepsilon_0} \cdot \frac{ y }{ \left[ \gamma^2 (x - v t)^2 + y^2 + z^2 \right]^{3/2} }\)

\(B_z = \frac{v}{c^2} \cdot \frac{\gamma q}{4\pi\varepsilon_0} \cdot \frac{ y }{ \left( \gamma^2 (x - vt)^2 + y^2 + z^2 \right)^{3/2} }\)