\(x={a^{\mu}}_{\sigma} x’\)
\(x’= {a_{\sigma}}^\mu x\)
\({a_\sigma}^\mu \equiv {(a^{-1})^\mu}_\sigma\)
\[ {a^\mu}_\nu = \begin{pmatrix} \gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \beta = \frac{v}{c}, \gamma = \frac{1}{\sqrt{1-\beta^2}} \]
逆矩阵\({a_\nu}^\mu\): \[ {a_\nu}^\mu = (a^{-1})^\mu_\nu = \begin{pmatrix} \gamma & \gamma \beta & 0 & 0 \\ \gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
\({a_\sigma}^\mu {a^\sigma}_\nu = \delta^\mu_\nu\)
\( \delta^\mu_\nu \) 是克罗内克δ(单位矩阵)
\[ \delta^\mu_\nu = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
混合度规张量 \(g^\mu_\nu = g^{\mu\alpha} g_{\alpha\nu}\)
其中:
-
\( g^{\mu\alpha} \) 是逆变度规张量(用于升指标),
-
\( g_{\alpha\nu} \) 是协变度规张量(用于降指标)。
\(g_{\mu\nu} = \text{diag}(1, -1, -1, -1), \quad g^{\mu\nu} = \text{diag}(1, -1, -1, -1)\)
由于 \( g^{\mu\alpha} \) 是 \( g_{\alpha\nu} \) 的逆矩阵,它们的乘积就是 单位张量(克罗内克 delta):
\[ g^\mu_\nu = \delta^\mu_\nu \]
\[ g^\mu_\nu = \delta^\mu_\nu = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]