对波动方程 \( \psi(x,t)=cos(kx-wt)\),对伽利略变换:

\( x =x’ +vt’ \)

\( t=t’ \)

有:

\( \psi(x,t)=cos(k(x’+vt’)-\omega t’)=cos(kx’-(\omega -kv)t’\)

此时相速度:

\( v_p’=\frac{\omega+kv}{k}=\omega+v \)

洛伦兹变换下:

\(x = \gamma (x’ + v t’)\),

\(t = \gamma ( t’ + \frac{v x’}{c^2})\),

\(\psi’(x’, t’) = \cos \left[ k \gamma (x’ + v t’) - \omega \gamma \left( t’ + \frac{v x’}{c^2} \right) \right]\),

\( = \cos \left[ \gamma \left( k - \frac{\omega v}{c^2} \right) x’ + \gamma (k v - \omega) t’ \right] \).

变换后:

\(k’ = \gamma \left( k - \frac{\omega v}{c^2} \right)\),

\(\omega’ = \gamma (\omega - k v)\).

相速度:

\(v_p’ = \frac{\omega’}{k’} = \frac{\gamma (\omega - k v)}{\gamma \left( k - \frac{\omega v}{c^2} \right)} = \frac{\omega - k v}{k - \frac{\omega v}{c^2}}\)

\( =\frac{\frac{w}{k}-v}{1-\frac{w}{k} \frac{v}{c^2} } \)

\( =\frac{v_p-v}{1- \frac{v_p v}{c^2} } \)

如果 \( v_p =c \),则:

\( v_p’ =\frac{c-v}{1-cv/c^2}=c \)

可见,洛伦兹变换反映的是波动(行波)现象。