对无源波动方程:
\(\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \),
符合变换 \(x’=x-vt\), \(t’=t-xv/c^2\),
即变形的伽利略变换
对有源波动方程:
\(\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = a \),
使用\(x’=x-vt\), \(t’=t-xv/c^2\), 则替换x’, t’后变为:
\[ \left( 1 - \frac{v^2}{c^2} \right) \frac{\partial^2 \mathbf{E}}{\partial x’^2} + \frac{\partial^2 \mathbf{E}}{\partial y’^2} + \frac{\partial^2 \mathbf{E}}{\partial z’^2} + \frac{v^2 - c^2}{c^4} \frac{\partial^2 \mathbf{E}}{\partial t’^2} = a \]
即:
\[ \frac{1}{\gamma^2} \frac{\partial^2 \mathbf{E}}{\partial x’^2} + \frac{\partial^2 \mathbf{E}}{\partial y’^2} + \frac{\partial^2 \mathbf{E}}{\partial z’^2} - \frac{1}{\gamma^2} \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t’^2} = a \]
与使用 \(x’=x/\gamma\), \(t’=t/\gamma\)变换一样,感觉是x’缩小了\(\gamma\),光速也缩小了\(\gamma\).
而使用洛伦兹变换后,则变成:
\[ \nabla’^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t’^2} = a \]
只要a’=a,则保持不变
其中 \( x’=\gamma(x-vt) \) 生成了 \(\gamma^2 x’^2\)与\(\gamma^2 \frac{v^2 t’^2}{c^4}\)
其中 \( t’=\gamma(t-vx/c^2) \) 生成了 \(\gamma^2 t’^2\)与\(\gamma^2 v^2 x’^2\)