自旋算符,
\[ \mathbf{L} = \mathbf{r} \times \mathbf{p} = \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} = \begin{pmatrix} y p_z - z p_y \\ z p_x - x p_z \\ x p_y - y p_x \end{pmatrix} \] 满足:
\( [L_i, L_j] =i h L_k \),
\( (\vec{L} \times \vec{L})_i = L_j L_k - L_k L_j = [L_j, L_k] = i\hbar L_i \),所以:
\( L \times L =i h L = i h \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} \)
对泡利矩阵\sigma,
\( \alpha =\sigma \cdot p = \sigma_x p_x + \sigma_y p_y + \sigma_z p_y =\begin{pmatrix} p_z & p_x-i p_y \\ p_x + i p_y & -p_z\end{pmatrix} \)
\( [\sigma_i, \sigma_j] =2 i \sigma_k \),
\( (\vec{\sigma} \times \vec{\sigma}) =2i \sigma =2 i \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{pmatrix}\)
L与\(\sigma\)的关系:
\([\vec{L}, \vec{\sigma} \cdot \vec{p}] = i h (\vec{\sigma} \times \vec{p}) \)
\([\vec{\sigma}, \vec{\sigma} \cdot \vec{p}] = 2 i (\vec{\sigma} \times \vec{p}) \)
所以有:
\( [\vec{L}, \vec{\sigma} \cdot \vec{p}] = \frac{\hbar}{2} [\vec{\sigma}, \vec{\sigma} \cdot \vec{p}] \)
狄拉克构造的矩阵\(\alpha\):
\( \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} \)
满足:
\([\mathbf{L}, H] = i \boldsymbol{\alpha} \times \mathbf{p} \)
\([\mathbf{S}, H] = i \mathbf{p} \times \boldsymbol{\alpha} \)
\([\mathbf{H}+\mathbf{S}, H] = 0 \)
感觉这纯粹是一种技术上的拼凑,并非自然的体现费米子的自旋。