假定薛定谔方程形式:

\( i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi \)

概率密度:

\(\rho(\mathbf{x}, t) = |\psi(\mathbf{x}, t)|^2 = \psi^* \psi\)

于是:

\(\frac{\partial \rho}{\partial t} = \psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t}\)

\( = \frac{i\hbar}{2m} \left( \psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right)\)

\( = \nabla \cdot \left( \psi^* \nabla \psi - \psi \nabla \psi^* \right) \)

为满足 \(\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0\)

定义概率流密度 \(\mathbf{j}\):

\(\mathbf{j} = \frac{\hbar}{2mi} \left( \psi^* \nabla \psi - \psi \nabla \psi^* \right)\)

概率守恒公式可以写成:

\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi + \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* = 0 \)

含有势能V时:

\((\partial_t - \frac{i\hbar}{2m} \nabla^2)\psi = -\frac{i}{\hbar} V \psi \)

\((\partial_t + \frac{i\hbar}{2m} \nabla^2)\psi^* = \frac{i}{\hbar} V \psi^*\)

于是:

\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi =-\frac{i}{\hbar}\psi^* V \psi \)

\( \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* =\frac{i}{\hbar}\psi V \psi^* \)

所以:

\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi + \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* = -\frac{i}{\hbar}\psi^* V \psi + \frac{i}{\hbar}\psi V \psi^* \)

可见,概率流守恒,其实就是势能流守恒,也就是势能不含有虚数的时候(也即不存在旋转量),概率密度是守恒的,比如:

\( V=i a\)时:

\(\psi^* V \psi =\psi^* (ia) \psi =ia \psi^* \psi =ia |\psi|^2 \)

\(\psi V \psi^* =\psi (V \psi)^* =\psi (-ia) \psi^* =-ia \psi \psi^* =-ia |\psi|^2 \)

两者符号相反