假定薛定谔方程形式:
\( i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi \)
概率密度:
\(\rho(\mathbf{x}, t) = |\psi(\mathbf{x}, t)|^2 = \psi^* \psi\)
于是:
\(\frac{\partial \rho}{\partial t} = \psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t}\)
\( = \frac{i\hbar}{2m} \left( \psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right)\)
\( = \nabla \cdot \left( \psi^* \nabla \psi - \psi \nabla \psi^* \right) \)
为满足 \(\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0\)
定义概率流密度 \(\mathbf{j}\):
\(\mathbf{j} = \frac{\hbar}{2mi} \left( \psi^* \nabla \psi - \psi \nabla \psi^* \right)\)
概率守恒公式可以写成:
\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi + \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* = 0 \)
含有势能V时:
\((\partial_t - \frac{i\hbar}{2m} \nabla^2)\psi = -\frac{i}{\hbar} V \psi \)
\((\partial_t + \frac{i\hbar}{2m} \nabla^2)\psi^* = \frac{i}{\hbar} V \psi^*\)
于是:
\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi =-\frac{i}{\hbar}\psi^* V \psi \)
\( \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* =\frac{i}{\hbar}\psi V \psi^* \)
所以:
\( \psi^* \left( \partial_t - \frac{i\hbar}{2m} \nabla^2 \right) \psi + \psi \left( \partial_t + \frac{i\hbar}{2m} \nabla^2 \right) \psi^* = -\frac{i}{\hbar}\psi^* V \psi + \frac{i}{\hbar}\psi V \psi^* \)
可见,概率流守恒,其实就是势能流守恒,也就是势能不含有虚数的时候(也即不存在旋转量),概率密度是守恒的,比如:
\( V=i a\)时:
\(\psi^* V \psi =\psi^* (ia) \psi =ia \psi^* \psi =ia |\psi|^2 \)
\(\psi V \psi^* =\psi (V \psi)^* =\psi (-ia) \psi^* =-ia \psi \psi^* =-ia |\psi|^2 \)
两者符号相反