\(\sigma^\mu \partial_\mu = \sum_{\mu=0}^3 \sigma^\mu \partial_\mu = \sigma^0 \partial_0 + \sigma^1 \partial_1 + \sigma^2 \partial_2 + \sigma^3 \partial_3\)

即: \[ \sigma^\mu \partial_\mu = \begin{pmatrix} \partial_t + \partial_z & \partial_x - i \partial_y \\ \partial_x + i \partial_y & \partial_t - \partial_z \end{pmatrix} \]

右手系:

满足的方程 \( (E I + \vec{\sigma} \cdot \vec{p}) u(p) = 0 \)

\( u(p) =(u_1, u_2) \)

即:

\(\begin{pmatrix} E + p_z & p_x - i p_y \\ p_x + i p_y & E - p_z \end{pmatrix} u(p) = 0\)

得两个方程:

$$ \begin{cases} (E + p_z) u_1 + (p_x - i p_y) u_2 = 0 \quad \text{(a)}\\ (p_x + i p_y) u_1 + (E - p_z) u_2 = 0 \quad \text{(b)} \end{cases} \tag{2} $$

\( \frac{u1}{u2}=-\frac{p_x-i p_y}{E+p_z} =-\frac{E-p_z}{p_x+i p_y} \)

左手系:

满足的方程:\( (E I - \vec{\sigma} \cdot \vec{p}) v(p) = 0 \)

\(\begin{pmatrix} E - p_z & -p_x + i p_y \\ -p_x - i p_y & E + p_z \end{pmatrix} v(p) = 0 \)

得:

$$ \begin{cases} (E - p_z) v_1 + (-p_x + i p_y) v_2 = 0 \quad \text{(a)}\\ (-p_x - i p_y) v_1 + (E + p_z) v_2 = 0 \quad \text{(b)} \end{cases} \tag{2} $$

\( \frac{v1}{v2}=-\frac{p_x-i p_y}{E-p_z} =-\frac{E+p_z}{p_x+i p_y} \)

都满足 \( E^2 =p_x^2+p_y^2+p_z^2 \),

即: \( (E+p_z)(E-p_z) = (p_x+i p_y)(p_x-i p_y) \)

或: \( (E+p_z)(E-p_z)u_1 u_2 = (p_x+i p_y)(p_x-i p_y)u_1 u_2 \)

\( D^2 u(p) =\Box I u(p) \)