动量关系式:
\((mc)^2 =(m_0c)^2 +(mv)^2\)
能量关系式:
\((mc^2)^2 =(m_0c^2)^2 + (mvc)^2\)
能量关系式实质是动量关系式的变形,此处的\( mvc \)并不是能量,实质上的能量为:
\( mc^2 = m_0 c^2 + P \),
动能K,与动量p的关系是:
\(p=mv=\lambda m_0 v\)
\(K=mc^2-m_0c^2 =(\lambda -1)m_0 c^2 \)
\( \frac{K}{pc} = \frac{c}{v}(1-\frac{1}{\lambda} ) \)
\(\frac{dp}{dv}=m\lambda^3 \)
\(\frac{dK}{dv}=\frac{dE}{dv}=mv\lambda^3 \)
\(\frac{dK}{dv} = v \frac{dp}{dv} \),与经典关系一致