在\((ct)^2-x^2=(ct’)^2=x’^2\)中,我们假设\(x=x_0+vt\),以便引入速度v,对应的x’写成x’_0:
\( (ct)^2-(x_0+vt)^2=(ct’)^2-(x’_0)^2\)
解上述方程,得到:
\(t= \frac{x_0v ± \sqrt{x_0^2v^2 + (c^2 - v^2)(x_0^2 + c^2t’^2 - x_0’^2)}}{c^2 - v^2}\)
此时,我们假设t与t’成线性关系,也就需要根号下的内容能写成 (at’+b)^2的形式:
\( x_0^2v^2 + (c^2 - v^2)(x_0^2 + c^2t’^2 - x_0’^2)=(at’+b)^2 \)
即:
\( [x_0^2v^2 + (c^2 - v^2)x_0^2] + (c^2 - v^2)c^2t’^2 - (c^2 - v^2)x_0’^2 \)
\(=a^2t’^2 + 2abt’ +b^2 \)
于是有:
\( (c^2 - v^2)c^2 = a^2, (1)\)
\( b=0 \)
\(x_0^2v^2 + (c^2 - v^2)x_0^2 - (c^2 - v^2)x_0’^2 = b^2 = 0, (2)\)
根据 (1),可得 \( a=c\sqrt{c^2-v^2} \)
对 (2) 可得:
\( x’_0=\sqrt{(c^2-v^2)/c^2}x_0=\gamma x_0 \)
代入t的式子中,可得:
\(t = \frac{x_0v \pm c\sqrt{c^2 - v^2} \cdot t’}{c^2 - v^2}\)
去掉减号项,并把\(x_0=x’_0/\gamma \)代入,可得:
\( t = \gamma ( t’ + \frac{x_0’ v}{c^2} ) \)