在\((ct)^2-x^2=(ct’)^2=x’^2\)中,我们假设\(x=x_0+vt\),以便引入速度v,对应的x’写成x’_0:

\( (ct)^2-(x_0+vt)^2=(ct’)^2-(x’_0)^2\)

解上述方程,得到:

\(t= \frac{x_0v ± \sqrt{x_0^2v^2 + (c^2 - v^2)(x_0^2 + c^2t’^2 - x_0’^2)}}{c^2 - v^2}\)

此时,我们假设t与t’成线性关系,也就需要根号下的内容能写成 (at’+b)^2的形式:

\( x_0^2v^2 + (c^2 - v^2)(x_0^2 + c^2t’^2 - x_0’^2)=(at’+b)^2 \)

即:

\( [x_0^2v^2 + (c^2 - v^2)x_0^2] + (c^2 - v^2)c^2t’^2 - (c^2 - v^2)x_0’^2 \)

\(=a^2t’^2 + 2abt’ +b^2 \)

于是有:

\( (c^2 - v^2)c^2 = a^2, (1)\)

\( b=0 \)

\(x_0^2v^2 + (c^2 - v^2)x_0^2 - (c^2 - v^2)x_0’^2 = b^2 = 0, (2)\)

根据 (1),可得 \( a=c\sqrt{c^2-v^2} \)

对 (2) 可得:

\( x’_0=\sqrt{(c^2-v^2)/c^2}x_0=\gamma x_0 \)

代入t的式子中,可得:

\(t = \frac{x_0v \pm c\sqrt{c^2 - v^2} \cdot t’}{c^2 - v^2}\)

去掉减号项,并把\(x_0=x’_0/\gamma \)代入,可得:

\( t = \gamma ( t’ + \frac{x_0’ v}{c^2} ) \)