在关系式\((ct)^2-x^2=(ct’)^2-x’^2\)中,我们对t求导,得到:
\( c^2 t - x \frac{dx}{dt} = c^2 t’ \frac{dt’}{dt} - x’ \frac{dx’}{dt} \)
在O坐标系看来,x的变换速度是v,也就是 \( \frac{dx}{dt}=v \),得到:
\( c^2 t - x v = c^2 t’ \frac{dt’}{dt} - x’ \frac{dx’}{dt} \)
此时只要求出\(\frac{dx’}{dt}=0\),\(\frac{dt’}{dt}=\frac{1}{\gamma} \),就可以得到:
\( c^2 t - x v = c^2 t’ / \gamma - 0 \),即:
\( t’=\gamma (t-xv/c^2) \)
此时,重点求:
\( \frac{dx}{dt}=v \)时:
\(\frac{dx’}{dt}=0\),
\(\frac{dt’}{dt}=\frac{1}{\gamma} \)
我们对前面的式子:
\[ c^2 t - x v = c^2 t’ \frac{dt’}{dt} - x’ \frac{dx’}{dt} \tag{1} \]
再求一次导数,可得:
\( c^2 - v^2 - x \frac{dv}{dt} = c^2 \left[ \left(\frac{dt’}{dt}\right)^2 + t’ \cdot \frac{d^2 t’}{dt^2} \right] - \left[ \left(\frac{dx’}{dt}\right)^2 + x’ \cdot \frac{d^2 x’}{dt^2} \right] \)
我们假设v是常数,t’和t, x’和t都是一次关系,有:
\(\frac{dv}{dt}=0\),\( d^2t’/dt^2=0\), \(d^2x’/dt^2=0\),于是上式简化为:
\[ c^2 - v^2 = c^2 (\frac{dt’}{dt})^2 - (\frac{dx’}{dt})^2 \tag{2} \]
物体静止与O’坐标系,x’是和时间无关的,所以:
\(\frac{dx’}{dt}=0\),于是有:
\(c^2 - v^2 = c^2 (\frac{dt’}{dt})^2 \)
得到:
\(\frac{dt’}{dt} = \sqrt{\frac{c^2 - v^2}{c^2}}=1/\gamma \)
带入上式(1),得到:
\( c^2 t - x v = c^2 t’ /\gamma \),即:
\[ t’=\gamma(t-xv/c^2) \]
=== 另一个方法:
使用\((ct)^2-(x_0+vt)^2=(ct’)^2-x_0’^2\),对t求导,x_0和x_0’为常数,可得:
\(\frac{dt’}{dt} = \frac{(c^2 - v^2)t - v x_0}{c^2 t’}\)
假设\(\frac{dt’}{dt} =1/\gamma \),可得:
\(t = \gamma(t’ + \frac{v x_0}{c^2}/\gamma) \), 假设\(x’_0=x_0/\gamma\),得到:
\(t = \gamma(t’ + \frac{v x’_0}{c^2}) \)
所以,重点是求:
\(x’=x_0\),对应\(x=x_0+vt\)时:
\(\frac{dt}{dt’}=\gamma \)
\(x_0=\gamma x’_0 \)