电场的速度项与辐射项的对比
速度项: \[ \mathbf{E}_{\text{vel}}(\mathbf{r}, t) = \frac{q}{4\pi\epsilon_0} \left[ \frac{(\hat{n} - \bm{\beta})(1 - \beta^2)}{(1 - \hat{n} \cdot \bm{\beta})^3 R^2} \right]_{t’} \] 辐射项: \[ \mathbf{E}_{\text{rad}} = \frac{q}{4\pi\epsilon_0} \frac{\hat{n} \times \left[ (\hat{n} - \bm{\beta}) \times \dot{\bm{\beta}} \right]}{c(1 - \hat{n}\cdot\bm{\beta})^3 R} \] 在沿x方向运动时速度项分量: \[ E_x = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \frac{\frac{x - x_q(t’)}{R} - \beta}{\left[ R (1 - \beta \frac{x - x_q(t’)}{R}) \right]^3} \] \[ E_y = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \frac{y/R}{\left[ R (1 - \beta \frac{x - x_q(t’)}{R}) \right]^3} \] \[ E_z = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \frac{z/R}{\left[ R (1 - \beta \frac{x - x_q(t’)}{R}) \right]^3} \] ...