泊松括号(Poisson Bracket)与角动量对易关系 1. 经典力学中的泊松括号 在经典力学中,泊松括号是描述两个物理量在相空间中变化关系的重要工具。对于任意两个物理量 \( A(\mathbf{r}, \mathbf{p}) \) 和 \( B(\mathbf{r}, \mathbf{p}) \),其泊松括号定义为: \[ \{A, B\} = \sum_{i=1}^{3} \left( \frac{\partial A}{\partial x_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial x_i} \right). \]
2. 经典角动量的泊松括号 经典轨道角动量的分量为: \[ L_x = y p_z - z p_y, \quad L_y = z p_x - x p_z, \quad L_z = x p_y - y p_x. \]
计算 \(\{L_x, L_y\}\): \[ \{L_x, L_y\} = \frac{\partial L_x}{\partial y} \frac{\partial L_y}{\partial p_y} - \frac{\partial L_x}{\partial p_y} \frac{\partial L_y}{\partial y} + \frac{\partial L_x}{\partial z} \frac{\partial L_y}{\partial p_z} - \frac{\partial L_x}{\partial p_z} \frac{\partial L_y}{\partial z}. \] 代入 \(L_x\) 和 \(L_y\) 的表达式: \[ \frac{\partial L_x}{\partial y} = p_z, \quad \frac{\partial L_y}{\partial p_y} = 0, \quad \frac{\partial L_x}{\partial p_y} = -z, \quad \frac{\partial L_y}{\partial y} = 0, \] \[ \frac{\partial L_x}{\partial z} = -p_y, \quad \frac{\partial L_y}{\partial p_z} = -x, \quad \frac{\partial L_x}{\partial p_z} = y, \quad \frac{\partial L_y}{\partial z} = p_x. \] 因此: \[ \{L_x, L_y\} = p_z \cdot 0 - (-z) \cdot 0 + (-p_y) \cdot (-x) - y \cdot p_x = x p_y - y p_x = L_z. \] 类似地,可以证明: \[ \{L_y, L_z\} = L_x, \quad \{L_z, L_x\} = L_y. \] 综合起来,经典角动量的泊松括号满足: \[ \{L_i, L_j\} = \epsilon_{ijk} L_k. \]
...