球面波的旋度总结
对球面波\(F=\vec{r}/r’\),\(r=(x-vt,y,z), r’=(\gamma(x-vt),y,z)\), \( F=\frac{(x-vt,y,z)}{\sqrt{(\gamma(x-vt))^2+y^2+z^2}}\) 由于\(x\)方向多了个\(\gamma\), 求旋度, \(\nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right)\mathbf{i} - \left( \frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right)\mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)\mathbf{k}\) y分量: \(\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} = -\frac{\gamma^2 z(x-vt)}{r’^3} + \frac{z(x-vt)}{r’^3} = \frac{z(x-vt)(1-\gamma^2)}{r’^3}\) 产生了\(1-\gamma^2\)的差值,于是产生了y方向的偏转,同理,也产生了z方向的偏转,最终产生了旋度。 最终结果: \(\nabla \times \left( \frac{\vec{r}}{r’} \right) = \frac{\gamma^2 v^2}{c^2} \left( 0, \frac{z(x-vt)}{r’^3}, -\frac{y(x-vt)}{r’^3} \right) \) ...