球面波的旋度
f=\vec(r)/r^2的旋度的旋度 的旋度的旋度 问题陈述 给定向量场: \[ \mathbf{F} = \frac{\vec{r}}{r^2} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{1}} \] 其中 \( \vec{r} = (x, y, z) \),\( r = \sqrt{x^2 + y^2 + z^2} \),求其 旋度(curl)。 1. 旋度的定义 旋度是向量微分算子,作用于向量场 \( \mathbf{F} = (F_x, F_y, F_z) \): \[ \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} \] 展开后: \[ \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right)\mathbf{i} - \left( \frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right)\mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)\mathbf{k} \] ...