狄拉克方程自旋总结
从薛定谔方程: \(ih\partial_t \phi=\frac{p^2}{2m} \phi \) 使用\( p^2=(\sigma \cdot \mathbf{p})^2 \),则变成狄拉克方程的形式: \(ih\partial_t \phi = \frac{(\mathbf{\sigma} \cdot \mathbf{p})^2}{2m} \phi \) 当有磁场时,p增加了作用量,变成了: \( \mathbf{p}=\mathbf{p}-\frac{e}{c} \mathbf{A} \), 方程变成: \(ih\partial_t \phi = \frac{(\mathbf{\sigma} \cdot (\mathbf{p}-\frac{e}{c} \mathbf{A}))^2}{2m} \phi \) \( (\mathbf{\sigma} \cdot (\mathbf{p}-\frac{e}{c} \mathbf{A}))^2 =(\mathbf{p}-\frac{e}{c} \mathbf{A})^2 + i \mathbf{\sigma} \cdot ((\mathbf{p}-\frac{e}{c} \mathbf{A}) \times (\mathbf{p}-\frac{e}{c} \mathbf{A})) \) \( (\mathbf{p}- \mathbf{A}) \times (\mathbf{p}- \mathbf{A}) =\mathbf{p} \times \mathbf{A} + \mathbf{A} \times \mathbf{p} =-ih (\nabla \times A) =-ih \mathbf{B} \) ...